Damped Forced Vibration Example
From the End of the Chapter Four Notes and Examples
Here are some Maple commands to solve this problem.
Solution and Graphs: Solution in orange, steady-state solution in green, transient solution in blue
| > | ode:=diff(y(t),t$2)+3*diff(y(t),t)+2*y(t)=2*cos(t); |
| > | dsolve(ode,y(t)); |
| > | ic:=y(0)=0,D(y)(0)=0; |
| > | dsolve({ode,ic},{y(t)}); |
| > | f:=rhs(%); |
| > | with(plots): |
| > | solution:=plot(f,t=0..6*Pi,y=-1..1,color=orange,thickness=2,labels=[t,y]): |
| > | transient:=plot((4/5)*exp(-2*t)-exp(-t),t=0..6*Pi,y=-1..1,color=blue,thickness=2,labels=[t,y]): |
| > | steady:=plot((1/5)*cos(t)+(3/5)*sin(t),t=0..6*Pi,y=-1..1,color=green,thickness=2,labels=[t,y]): |
| > | display(solution,transient,steady); |
| > |